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Abstract 
This two-year project is aimed at establishing advanced diagnostics techniques for obtaining 

volumetric measurement of key combustion properties. The proposed techniques are designed to 

generate instantaneous volumetric (i.e., three-dimensional, 3D) data without scanning or raster, 

and thusly to enable measurement rate in the multi-kilohertz range, directly addressing a key 

experimental need identified in the BAA. The following is a list of the specific objectives 

proposed and the accomplishments that we have achieved during the first year of the project 

under each objective.  

1. A Unified Framework for Volumetric Tomography 

This objective was successfully completed. A unified mathematical framework for obtaining 

3D information from multiple projection measurements has been established, and the 

corresponding tomographic algorithm developed. The framework is applicable to all the 

subsequent research topics listed below. 

2. Volumetric Chemiluminescence Imaging (VCHEM) 

This objective was successfully completed. A VCHEM technique was developed and 

demonstrated in highly turbulent flames to combine chemiluminescence (or emission 

spectroscopy in general) and tomographic imaging to enable volumetric measurement of several 

key properties, including flame topography, curvature, surface area, and volume.  

3. Volumetric Laser Induced Fluorescence (VLIF) 

This objective was partially completed, and will continue into the second year. We have 

developed and demonstrated a VLIF technique that can extend the well-established PLIF (planar 

LIF) to volumetric measurement of species concentration. The VLIF technique used a thick laser 

sheet (or beam) to excite CH radicals in a volume. Measurements have been conducted in 

various flames, ranging from laminar to highly turbulent flames. Further data processing is 

underway.  

4. Volumetric Particle Image Velocimetry (VPIV) 

This objective was partially completed and will continue into the second year. We have 

performed experiments to reconstruct the seeder distribution in 3D, and we are developing the 

correlation algorithms to calculate velocity. 

5. Use of Fiber Bundles in Volumetric Tomography 

This objective was successfully completed. We have developed customized fiber endoscopes 

and demonstrate them in a variety of 3D measurement campaigns, ranging from laboratory 

flames to a Mach combustor. 

6. Data Analysis and Post Processing  

This objective was partially completed and will continue into the second year. We have 

developed algorithms to extract key physics from the 4D datasets (three spatial dimensions and 

time) enabled by the volumetric diagnostics listed above. These algorithms included algorithms 

to extract flame topography, surface area, 3D curvature, and multi-dimensional POD (proper 

orthogonal decomposition). We will keep developing new algorithms as our experimental work 

progresses.  
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2. Research Efforts  

2.1. A Unified Framework for Volumetric Tomography 
This objective has been successfully completed. Our work under this objective has been 

detailed in [1] and [2].  

A brief summary is provided here with the aid of Figure 1. Figure 1 shows the 

mathematical formation of the problem. We assume the measurement volume is cubical with a 

dimension of L that encompasses the region of interests in the flame. The measurement volume 

is discretized into n voxels in each direction with n = L/, resulting in a total of n
3
 voxels. 

Chemiluminescence photons emitted from each voxel will transmit through the imaging system 

and then reach the camera chip, forming an image (called a projection, P) as shown. 

  

Figure 1. Mathematical formulation of volumetric diagnostic. 

The projection of F on the camera chip is related to F itself via the point spread function 

as shown below:  

 
1 1 1

( , ) ( , , ) ( , , ; , )
F F F

n n n

P P F F F F F F P P

x y z

x xP y F x y z PSF x y z y
  

   (1) 

P(xP, yP) represent the value of projection at a pixel located (xP, yP) on the camera chip; xF, yF, 

and zF the indices of the voxels in the x, y, and z directions, respectively; n the total number of 

voxels in each direction as introduced above; PSF the point spread function defined as the 

projection formed at (xP, yP) by a point source located at (xF, yF, zF) with unity intensity.  Note 

that the PSF does not depend on F, but it depends on the lens used in the imaging system and the 

location and orientation of the imaging system. Physically, Eq. (1) states that the projection of F 

on pixel (xP, yP) is a weighted summation of signals contributed from all voxels’ on this pixel, 

and the weighting factor is the point spread function (PSF). A hybrid algorithm that combined 

the ART (algebraic reconstruction algorithm) and TISA (tomographic inversion by simulated 

annealing) was developed to solve this problem.  
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2.2. Volumetric Chemiluminescence Imaging (VCHEM) 

This objective has been successfully completed. Our work under this objective has been 

detailed in [2-4].  

A VCHEM technique was developed and demonstrated in a range of flames, including 

laminar flame for validation purposes [2], highly turbulent flames [5], and supersonic flames [3, 

4]. Based on the volumetric measurement, several key properties, including flame topography, 

curvature, surface area, and volume were extracted.  

Here we use an example measurement in a Mach 2 combustor to illustrate the VCHEM 

diagnostics. This example involved a measurement campaign in collaboration with researchers at 

the Air Force Research Laboratory (Drs. Timothy Ombrello and Campbell Carter). The 

campaign combined endoscopic imaging and tomography, to enable 3D flame measurements in a 

Mach 2 combustor at a temporal rate of 20 kHz (i.e., 50 s). Customized fiber endoscopes were 

applied to image the target flame from 8 different view angles simultaneously at 20 kHz. The 

images captured were then fed into a tomography inversion algorithm, frame-by-frame, to obtain 

4D flame properties, including topography, surface area, volume, and curvature. These results 

are used to study both the ignition and stable operation of the combustor. Figure 2 below shows a 

photo of the experimental set up and an example of the 3D flame topography obtained during the 

ignition and stable operation stage.  

 

Figure 2.  Application of the VCHEM diagnostic in a Mach 2 combustor and a set of example 3D 

reconstruction and images captured by the fiber endoscope from the top and side view for both the 

ignition (panels a, b, and c) and the stable operation stage (panels d, e, and f).  

Such volumetric measurement capability enabled 3D information and provided valuable 

data to study the combustion processes. As an example, Figure 3 shows the volume the flame 

calculated from the 3D reconstructions for a fuel lean case (panel a) and a fuel rich case (panel b), 
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respectively. Results obtained on others cases were similar, and led to the same observations and 

conclusions discussed here. In these results, the contribution from sparks were separated out and 

excluded in these result. Both the fuel lean and rich results show two distinct stages: 1) the 

ignition stage during which the volume of the flame grew rapidly, and 2) the stable combustion 

stage during which the volume remained relatively stable. To quantify the transition time from 

the ignition stage to the stable combustion stage, here we defined time t2 as the time that the 

flame volume reached the averaged of the stable stage. For instance, for the results shown in 

Figure 3a (fuel lean case), the average volume (during t=5 ms to 10 ms) was calculated first as 

shown, and the time when the flame volume first reached this value was then defined as t2 

(which was determined to be 3.5 ms in this case). For the results shown in Figure 3b for the first 

fuel rich case, t2 was determined to be 5.6 ms in this case. The transition times for other cases 

were also determined from these 3D measurements, and these results show that the ignition 

kernel initiated earlier and transitioned into stable flames earlier than under fuel lean conditions 

than under fuel rich conditions. These observations are in agreement with past observations  [6]. 

 

Figure 3. Measured 3D volume for fuel lean case 1 (panel a) and fuel rich case 1 (panel b). 

2.3. Volumetric Laser Induced Fluorescence (VLIF) 
This objective was completed and is summarized in [7-9] and [10].   

We have developed and demonstrated a VLIF technique that can extend the well-

established PLIF (planar LIF [11, 12]) to volumetric measurement of species concentration, and 

have demonstrated single-shot VLIF measurements in both passive [9] and reactive flows [8, 10]. 

Here we focus this report on the demonstration and validation of the VLIF technique in reactive 

flows based on CH radial. In these demonstrations and validations, the VLIF technique used a 

thick laser sheet (or beam) to excite CH radicals in a volume. Measurements have been 

conducted in various flames, ranging from laminar to highly turbulent flames. Figures 4 and 5 
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show an example set of VLIF measurements taken out of [7]. These measurements were 

obtained with a total of 5 intensified cameras based on CH radical in a highly turbulent jet flame 

(piloted). Figure 3 shows the measured projections at three different time instants, and Figure 5 

shows the corresponding 3D VLIF reconstruction.  

 

Figure 4. Example VLIF measurements based on CH radial of turbulent flames at three 

consequent time instants using a total of 5 cameras. 

 

Figure 5. 3D VLIF reconstruction of instantaneous turbulent flame structures. 

After the above demonstration measurements, a set of validation measurements were 

performed by a direct comparison between 2D (two-dimensional) and 3D VLIF in both laminar 

and highly turbulent flames. To accomplish such validation, planar LIF (PLIF) and VLIF 

measurements were simultaneously performed on both laminar and turbulent flames based on the 

CH radical.  The PLIF measurements imaged a planar cross-section of the target flames across a 

2D field-of-view (FOV) of 42×42 mm. The VLIF measurements imaged the same region in the 

target flame with a 3D FOV of 42×42×5 mm, with 5 mm being the thickness of the measurement 

volume. The VLIF signals generated in this volume were captured by five intensified cameras 

from different perspectives, based on which a 3D tomographic reconstruction was performed to 

obtain the 3D reconstruction of the CH radical (as a marker of the flame front). The PLIF 

measurements were then compared to a cross-section of the VLIF measurement to demonstrate 
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the feasibility and accuracy of instantaneous 3D imaging of flame topography and flame surface 

area in highly turbulent flames. Figure 6 shows a set of sample VLIF and PLIF projections to 

illustrate the nature of the experiments. The flame was generated with the HiPiolot burner 

operating on high flow rates, resulting in a highly turbulent flame with turbulent Reynolds 

number of 4,240 [13, 14]. Fig. 6a-e shows the measured VLIF projections by cameras 1-5 and 

Fig. ff shows the simultaneous PLIF measurements by camera 6. These images illustrate the 

volumetric nature of the VLIF signal, in contrast to the planar nature of the PLIF signal. 

 
Figure 6. A set of example projections measured by camera 1 through 6. Panels (a) – (e): the 

VLIF projections captured by camera 1 through 5. Panel (f): the PLIF measurement captured by 

camera 6. 

 

Figure 7. Panel (a): 3D VLIF measurement. Panels (b): the cross-section of the VLIF 

measurement at Y = 0 mm. Panel (c): comparison of VLIF and PLIF. 

Based on the VLIF signal shown in Fig. 6a-e, the 3D distribution of CH was 

reconstructed using the tomographic algorithm detailed above. The reconstruction was 

performed on a measurement region of 45 × 45 × 5 mm, discretized into 256 × 256 × 28 voxels 

(resulting in a voxel size of 0.18 mm), as shown in Figure 7a. For direct comparison with the 
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PLIF measurements, the VLIF reconstruction at Y=0 mm (i.e., the central plane of the burner 

and the plane where the PLIF measurement was taken) was extracted and plotted in Fig. 7b. Fig. 

7c directly compares this reconstruction against the PLIF measurement (shown in Fig. 6f) by 

overlaying the two measurements (with the PLIF measurement shown in white to aid the 

comparison). The good agreement observed in this comparison demonstrates the fidelity and 

accuracy of the VLIF technique to provide instantaneous 3D measurements of highly turbulent 

flames, resolving both the large-scale and small-scale structures of the turbulent flame. Note too 

that the results shown here are from the high-flow case, and the agreement is better for results 

processed from flames with lower turbulent intensity.  

2.4. Volumetric Particle Image Velocimetry (VPIV) 
This objective was completed and the results are summarized here. We have performed 

experiments to reconstruct the seeder distribution both in turbulent flows and static samples, and 

have developed and validated the correlation algorithms for calculating velocity. Figures 8 and 9 

show a set of example results where we applied 5 cameras to turbulent jet flows seeded with 

water droplets and the 3D reconstruction of the distribution of the seeded water droplets. Based 

on such 3D reconstruction, a correlation algorithm was developed to obtain 3D3D (three 

dimensional and three component) velocity. 

 

Figure 8. Experiments performed in a jet flow seeded with water droplets and a set of measured 

projections. 
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Figure 9. 3D reconstruction of the seeded water droplets. Panel (a): 3D rendering. Panel (b): 

cross-sectional view at three different locations. 

 

To experimentally validate the above VPIV technique and the 3D correlation algorithm, a 

set of controlled measurements were designed and performed. The 3D measurements were 

performed based on the scattering light intensity of tracer particles seeded in a controlled cell. 

The particles were illuminated by a thick laser slab. The volumetric scattering signal was then 

simultaneously collected by a total of 6 cameras form 6 different orientations, based on which a 

3D tomographic reconstruction was performed to obtain the 3D distribution of light intensity 

discretized into voxels. The reconstructed tomogram pair of the cell was then analyzed using a 

3D cross-correlation program, resulting in the 3D3C velocity vector distribution over the domain 

of interest. The reconstructed velocity distribution was then compared to the ideal velocity 

distribution calculated from precisely controlled cell movement, both to provide a validation to 

tomo-PIV measurements and also to evaluate the accuracy of reconstructions. In each validation 

experiment, the location of the controlled cell was shifted by moving (or rotating) the cell to 

create a displacement for the seeded particles. Fig. 10 shows the vector distribution of the 

displacement field obtained using the tomographic and correlation algorithms. Fig. 10a shows 

the results when the controlled cell was moved translationally by 0.51 mm towards the positive x 

direction, and Fig. 10b shows the results when the controlled cell was rotated clock-wise (viewed 

from the top) by 2.5° around the center of the cell. The reconstruction and correlation was 

performed on a 30 × 30 × 30 voxels interrogation volumes at 75% overlap, resulting in a total of 

117 × 117 × 37 displacement vectors (which is equivalent to velocity vectors). As seen from Fig. 

10, the reconstructed displacement field agreed with the filed expected by moving and rotating 

the cell. The accuracy of the agreement is quantified in Fig. 11. Fig. 11(a) and 11(b) show the 

displacement error distribution corresponding to Fig. 10(a) and (b), respectively. Several 

observations can be made based on the results of Fig. 5. As seen, in both cases, the majority of 

the vectors were reconstructed accurately. More specifically, the error was within 3 pixels for 

more than 96% of the vectors in the translational case, and 85% in the rotational case.   
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Figure 10. The vector distribution of the displacement field of translation (panel (a)) and rotation 

(panel (b)). 

 

 

Figure 11. The displacement vector error distribution of the translation (panel (a)) and rotation 

(panel (b)) experiments. 
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2.5. Use of Fiber Bundles in Volumetric Tomography 
This objective was successfully completed as detailed in [15] and [16]. 

We have developed customized fiber endoscopes and demonstrate them in a variety of 3D 

measurement campaigns, ranging from laboratory flames to a Mach 2 combustor. Figures 7, 8, 

and 9 show an example set of results taken out of [15] to illustrate the technique. Figure 7 

illustrates the use of fiber endoscopes to combine multiple projections onto the same camera, 

Figure 8 shows 10 simultaneous projections captured using the fiber endoscopes and a total of 

three cameras, and Figure 9 shows the 3D reconstruction of the flame structure based on the 

projections. 

 

Figures 12.  Experiment setup and problem formulation. Inset on upper right corner shows a 

photograph of a fiber endoscope with four inputs and one output. 

 

Figures 13: Photograph of a V-flame. (B)-(D): Ten simultaneous projections captured on three 

cameras using three fiber endoscopes. 

 

Figure 14. (A): 3D reconstruction of the V-flame. (B): a cross-sectional view at along x=0. 
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2.6. Data Analysis and Post Processing  
This objective was completed and summarized in [17] and [18].  

We have developed algorithms to extract key physics from the 4D datasets (three spatial 

dimensions and time) enabled by the volumetric diagnostics listed above. These algorithms 

included algorithms to extract flame topography, surface area, 3D curvature, and multi-

dimensional POD (proper orthogonal decomposition). Two examples of the data analysis and 

processing algorithms are shown in Figure 15. The left panel of Figure 10 shows the 3D flame 

curvature extracted from VCHEM measurement on a highly turbulent Bunsen flame (the data 

was taken from [5]), and the right panel shows the second eigenmode of the flames stabilized in 

a Mach 2 combustor obtained via multi-angular proper orthogonal decomposition (POD) (the 

data was taken from [17]).  

       
Figure 15. Left: 3D curvature on a flame front extracted from 3D VCHEM technique. Right: the 

second eigenmode from 6 different orientations of fuel-rich flames measured in a Mach 2 

combustor . 

3. Air Force Laboratory and Other Collaborations  
The PI also proposed several collaborative activities in this project to maximize its 

impact and promote AFOSR’s vision and mission. In this project, the PI has collaborated with 

Drs. Campbell Carter and Tim Ombrello to perform volumetric measurements in the combustion 

facilities at WPAFB. The PI has visited WPAFB regularly (WPAFB is approximately 6 hours of 

driving from Virginia Tech), and he has been awarded the Summer Faculty Fellowship three 

times (2014, 2015, and 2016) and spent extended time on-site at WPAFB during these summers. 
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These collaborations successfully pooled together the resources and expertise between the PI’s 

group and the WPAFB groups to address issues of importance for the Air Force, for example, 

exploring the 3D nature of the ignition and transition processes under high Mach numbers and 

enabling 3D data in highly turbulent flames. These collaborations also provided a great 

opportunity for the PI and his students to participate in critical research at cutting-edge 

laboratories, for the enhancement of both science and education.  
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